Competitive adsorption of Cr(III) and Cr(VI) by sugarcane bagasse magnetic nanocomposite in water matrix

A pH study

Autores

DOI:

https://doi.org/10.24979/ambiente.v1i1.944

Palavras-chave:

Biossorvente, Nanomodificação, Descontaminação de água, Sorção

Resumo

Biosorption is an eco-friendly process with low cost, high speed, and efficiency in removing contaminants, among which chromium stands out due to its various industrial applications. Due to its adverse effects and the large number of industrial effluents containing chromium, new techniques have been proposed to decontaminate aquatic environments. The present work proposes to use sugarcane bagasse as a biosorbent, a residue from the sugar and alcohol industry, in natura (SB) and nanomodified (SB-NP), in order to evaluate the chromium removal capacity, in their most abundant forms, Cr(III) and Cr(VI), in aqueous matrices. The potential of these materials in water decontamination is evaluated in a batch process to investigate the effect of pH individual or competitive sorption of Cr(III) and Cr(VI) ions. Chromium was determined by Flame Atomic Absorption Spectroscopy (FAAS) or Ultraviolet-Visible Molecular Absorption Spectrophotometry (UV/VIS). In the individual sorption of these metal ions, the best Cr(VI) result for SB and SB-NP occurred at pH 1, with the removal of 85 and 84% of this contaminant, respectively. For Cr(III) sorption, the best sorption pH value was 6, reaching up to 60% and 40% removal for SB and SB-NP, respectively. In simultaneous studies, the highest removal efficiency was obtained at pH 4, with the removal of 27% and 52% for SB and SB-NP, respectively. Depending on the pH, Cr(III) and Cr(VI) may change their oxidation state, and hexavalent chromium can be reduced to Cr(III) due to the oxidation of organic matter on the surface of the biosorbent.

Downloads

Não há dados estatísticos.

Referências

ABILIO, T. E.; SOARES, B. C.; JOSÉ, J. C.; MILANI, P. A.; LABUTO, G.; CARRILHO, E. N. V. M. Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. Environ Sci Pollut Res. 2021. Available in: <https://doi.org/10.1007/s11356-020-11726-8>.

ALOMÁ, I. C.; RODRÍGUEZ, I.; CALEROB, M.; BLÁZQUEZ, G. Biosorption of Cr6+ from aqueous solution by sugarcane bagasse. Desalin Water Treat, v. 52, p. 31–33. 2013. Available in: <https://www.tandfonline.com/doi/abs/10.1080/19443994.2013.812521>.

BAKATULA, E. N.; RICHARD, D.; NECULITA, C. M.; ZAGURY, G. J. Determination of point of zero charge of natural organic materials. Environ Sci Pollut Res, v. 25, n. 8, p. 7823–7833. 2018. Available in: <https://link.springer.com/article/10.1007%2Fs11356-017-1115-7>.

CARVALHO, J. T. T.; MILANI, A. P.; CONSONNI, J. L.; LABUTO, G.; CARRILHO, E. N. V. M. Nanomodified sugarcane bagasse biosorbent: synthesis, characterization, and application for Cu(II) removal from aqueous medium. Environ Sci Pollut Res. 2020. Available in: <https://link.springer.com/article/10.1007/s11356-020-11345-3>.

DO CARMO RAMOS, S. N.; XAVIER, A. L. P.; TEODORO, F. S. E.; GIL, L.F.; GURGEL, L. V. A. Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono-and multicomponent adsorption in batch mode. Ind Crop Prod, v. 79, p. 116–130. 2016. Available in: <https://repositorio.ufop.br/bitstream/123456789/6700/1/ARTIGO_RemovalCobaltCopper.pdf>.

LABUTO, G.; CARDONA, D. S.; DEBS, K. B.; IMAMURA, A. R.; BEZERRA, K. C. H.; CARRILHO, E. N. V. M.; HADDAD, P. S. Low cost agroindustrial biomasses and ferromagnetic bionanocomposites to cleanup textile effluents. Desalination and Water Treatment, v. 12, p. 80–89, 2018. Available in: <https://bv.fapesp.br/pt/publicacao/151631/low-cost-agroindustrial-biomasses-and-ferromagnetic-bionanoc>.

LABUTO, G.; CARRILHO, E. N. V. M. Bioremediation in Brazil: challenges to improve the development and application to boost up the bioeconomy. In: Prasad, M. N. V. Bioremediation and Bioeconomy. Elsevier, 569-586. 2016.

MARTINS, M. A.; TRINDADE, T. Os nanomateriais e a descoberta de novos mundos na bancada do químico. Química Nova, v. 35, n. 7, p. 1434-1446, 2012. Available in: <https://www.scielo.br/scielo.php?pid=S0100-40422012000700026&script=sci_abstract&tlng=pt>.

MATOS, W. O.; NÓBREGA, J. de A.; SOUZA, G. B. de; NOGUEIRA, A. R. A. Especiação redox de cromo em solo acidentalmente contaminado com solução sulfocrômica. Química Nova, v. 31, n. 6, p. 1450-1454, 2008. Available in: <https://www.scielo.br/scielo.php?pid=S0100-40422008000600032&script=sci_abstract&tlng=pt>.

MILANI, P. A. Bagaço de cana-de-açúcar e raízes de alface empregados como biossorventes de íons metálicos em meio aquoso. Dissertação (Mestrado em Agricultura e Ambiente), Universidade Federal de São Carlos, Araras, 2017. Available in: <https://repositorio.ufscar.br/bitstream/handle/ufscar/9248/MILANI_Priscila_2017.pdf?sequence=8&isAllowed=y>.

MILANI, P. A.; DEBS, K. B.; LABUTO, G.; CARRILHO, E. N. V. M. Agricultural solid waste for sorption of metal ions: part I – characterization and use of lettuce roots and sugarcane bagasse for Cu(II), Fe(II), Zn(II), and Mn(II) sorption from aqueous medium. Environmental Science and Pollution Research, v. 25, n. 35, p. 895-35905, 2018a. Available in: <https://www.ncbi.nlm.nih.gov/pubmed/29520545>.

MILANI, P. A.; CONSONNI, J. L.; LABUTO, G.; CARRILHO, E. N. V. M. Agricultural solid waste for sorption of metal ions, part II: competitive assessment in multielemental solution and lake water. Environ Sci Pollut Res, v. 25, n. 36, p. 35906–35914. 2018b. Available in: <https://link.springer.com/article/10.1007%2Fs11356-018-1726-7>.

MOREIRA, D. R. Desenvolvimento de Adsorventes Naturais para Tratamento de Efluentes de Galvanoplastia. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais). Pontifícia Universidade Católica do Rio Grande do Sul, 2010. Available in: <http://tede2.pucrs.br/tede2/handle/tede/3158>.

PASCHOALINO, M. P.; MARCONE, G. P. S.; JARDIM, W. F. Os nanomateriais e a questão ambiental. Química Nova, v. 33, n. 2, p. 421-430, 2010. Available in: <https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422010000200033>.

PINA, F. D. de S. Tratamento de águas contaminadas com crómio(VI) por biossorção em algas marinhas. Dissertação (Mestrado Integrado em Engenharia do Ambiente). Universidade do Porto, 2011. Available in: <https://repositorio-aberto.up.pt/bitstream/10216/61695/1/000149215.pdf>.

SARKER, T. C.; AZAM, S. M. G. G.; EL-GAWAD, A. M. A.; GAGLIONE, S. A.; BONANOMI, G. Surgacane bagasse: a potential low-cost biosorbent for the removal of hazardous materials. Clean Technologies and Environmental Policy, v. 19, n. 10, p. 2343-2362, 2017. Available in: <https://www.springerprofessional.de/en/sugarcane-bagasse-a-potential-low-cost-biosorbent-for-the-remova/15109852>.

SILVA, N. M. Emprego do bagaço de cana na adsorção de metais em soluções aquosas. Trabalho de Conclusão de Curso (Bacharelado Acadêmico) – Universidade Federal de São João del Rei. São João del Rei, 2017. Available in: < https://ufsj.edu.br/portal-repositorio/File/coqui/Monografia-TCC-Natalia.pdf >.

SILVA, J. L. B. C.; PEQUENO, O. T. B. L; ROCHA, L. K. S.; ARAÚJO, E. C. O; MACIEL, T. A. R. Biossorção de Metais Pesados: Uma Revisão. Revista Saúde e Ciência Online, v. 3, n. 3, p. 137-149, 2014. Available in: <http://www.ufcg.edu.br/revistasaudeeciencia/index.php/RSC-UFCG/article/>.

YAO, Q.; ZHANG, H.; WU, J.; SHAO, L.; HE, P. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies. Environ Sci Eng China, v. 4, n. 3, p. 286–294, 2010. Available in: < https://link.springer.com/article/10.1007/s11783-010-0025-4>.

Downloads

Publicado

31/08/2021

Como Citar

ZUTIN BERETTA, G.; ABILIO , T. E. .; GABRIEL, L. .; LABUTO, G. .; CARRILHO, E. N. V. M. Competitive adsorption of Cr(III) and Cr(VI) by sugarcane bagasse magnetic nanocomposite in water matrix : A pH study. Ambiente: Gestão e Desenvolvimento, [S. l.], v. 1, n. 1, 2021. DOI: 10.24979/ambiente.v1i1.944. Disponível em: https://periodicos.uerr.edu.br/index.php/ambiente/article/view/944. Acesso em: 27 out. 2021.