Valoração da glicerina e vinhaça por meio do cultivo de microalgas.
Minirevisão
DOI:
https://doi.org/10.24979/ambiente.v1i1.926Keywords:
Microalgae, Bioproducts, Vinasse, GlycerinAbstract
Em 2019 o setor de biocombustíveis biodiesel/etanol geraram como subprodutos o glicerol e a vinhaça em quantidades significativas (476 milhões e 466 bilhões de litros, respectivamente). Portanto, é necessário reutilizar ou tratar essas substâncias para reduzir os seus impactos ambientais. Utilizá-los para dar suporte ao cultivo de microalgas é uma maneira sustentável de valoração e de tratamento desses resíduos. O objetivo desse trabalho é sistematizar os artigos científicos que relatam a utilização dessas substâncias para o cultivo de microalgas e, consequentemente, o tipo de bioprodutos algal obtido. O glicerol pode ser utilizado como uma fonte de carbono em crescimento algal mixotrófico e, por isso, pode aumentar a produção de biomassa. O mesmo processo pode acontecer com várias substâncias de pequeno peso molecular presente na vinhaça, mas, a concentração de nitrogênio e fosforo é que tornam esse efluente mais atraente para o processo de cultivo algal. Embora existam trabalhos científicos descrevendo a utilização dessas substâncias para o crescimento algal, esse trabalho destaca que estes variam significativamente de acordo com os relatos de operação do sistema de cultivo e a sua produtividade lipídica.
Downloads
References
BEIGBEDER, J-B.; BOBOESCU, J-Z.; LAVOIE, J-M. Thin stillage treatment and co-production of bio-commodities through finely tuned Chlorella vulgaris cultivation. Journal of Cleaner Production, v. 216, p.257-267, 2019.
BOROWITZKA, MA. Algae as Food, in: Brian JB Wood (ed). Microbiology of Fermented Foods, New York, Springer Science, 1998, 912 pg.
BUREK, P.Y.; SATOH, G.; FISCHER, M. T.; KAHIL, A.; SCHERZER, S.; TRAMBEREND, L.F.; NAVA, Y.; WADA, S.; et al. Water Futures and Solution - Fast Track Initiative (Final Report) 2016. Disponível em <http://pure.iiasa.ac.at/13008/. IIASA Working Paper WP 16-006> Acesso em 10/10/2020.
CABELLO, P. E.; SCOGNAMIGLIO, F. P.; TERÁN, F. J. C. Tratamento de vinhaça em reator anaeróbio de leito fluidizado. Engenharia Ambiental - Espírito Santo do Pinhal, v. 6, p. 321-338, 2009.
CERÓN GARCÍA, M.C., SÁNCHEZ MIRÓN, A., FERNÁNDEZ SEVILLA, J.M., MOLINA GRIMA, E., GARCÍA CAMACHO, F. Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem., v. 40, p.297–305, 2005.
CHEN, C-Y.; LEE, M-H.; LEONG, Y.K.; CHANG, J-S.; LEE, D-J. Biodiesel production from heterotrophic oleaginous microalga Thraustochytrium sp. BM2 with enhanced lipid accumulation using crude glycerol as alternative carbon source. Bioresource Technology, v.306, 123113, 2020.
CHOUDHARY, P., PRAJAPATI, S.K., KUMAR, P., MALIK, A., PANT, K.K. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresour. Technol. v.224, p.276–284, 2017.
CONAB - National Supply Company (Companhia Nacional de Abastecimento). Monitoring of brazilian sugar and ethanol sector in Brazil, v.7, 62p. - Edtion for 2019–2020. Disponível em <https://www.conab.gov.br/info-agro/safras/cana> Acesso em 10/10/2020.
CRUZ, J. I. DA; HOJDA, A.; PORTUGAL, R. DE S. Atuação do comitê da bacia hidrográfica do rio pardo na problemática da contaminação de águas subterrâneas pela vinhaça: carência de informações e ações. In: 24º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Belo Horizonte, 2007.
DINIZ, G.S., SILVA, A.F., ARAÚJO, O.Q., CHALOUB, R.M. The potential of microalgalbiomass production for biotechnological purposes using wastewater resources. J. Appl. Phycol, v.29, p. 821–832, 2017.
ENGIN, I.K.; CEKMECELIOGLU, D.; YUCEL, A.M.; OKTEM, H.A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production. Bioresource Technology, v.251, p.128–134, 2018.
EPE - Energy Research Company (Empresa de Pesquisa Energética). National Energy Balance. 73p. Edition 2019. Disponível em<https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2020 > Acesso em 10/10/2020.
ESPAÑA-GAMBOA, E.; MIJANGOS-CORTES, J.; BARAHONA-ÉREZ, L.; DOMINGUEZ-MALDONADO, J.; HERNÁNDEZ-ZARATE, G.; ALZATE-GAVIRIA, L. Vinasses: characterization and treatments. Waste Manag Research, v.29, p.1235-1250, 2011.
GODFRAY, H.C.J., BEDDINGTON, J.R., CRUTE, I.R., HADDAD, L., LAWRENCE, D., MUIR, J.F., et al. Food security: the challenge of feeding 9 billion people. Science, v. 327, p. 812–818, 2010.
IEA - International Energy Agency. Global water consumption in the energy sector by fuel type in the Sustainable Development Scenario, 2016-2030, IEA, Paris. Disponível < https://www.iea.org/data-and-statistics/charts/global-water-consumption-in-the-energy-sector-by-fuel-type-in-the-sustainable-development-scenario-2016-2030> Acesso em 10/10/2020.
KATIYAR, R.; GURJAR, B.R.; BHARTI, R.K.; KUMAR, A.; BISWAS, S.; PRUTHI, V. Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production. Renewable Energy, v.113, p.1359-1365, 2017.
LV, J., GUO, J., FENG, J., LIU, Q., XIE, S. Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater. Bioresour. Technol, v.234, p. 289–296, 2017.
MAJIDIAN, P., TABATABAEI, M., ZEINOLABEDINI, M., NAGHSHBANDI, M.P., CHISTI, Y. Metabolic engineering of microorganisms for biofuel production. Renewable Sustainable Energy Rev. v.82, p.3863–3885, 2018.
MAKRI, A.; FAKAS, S.; AGGELIS, G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technology, v. 101, p. 2351–2358, 2010.
MELO, R.G.; ANDRADE, A.F.; BEZERRA, R.P.; CORREIA, D.S.; SOUZA, V.C.; BRAILEIRO-VIDAL, A.C.; MARQUES, D.A.V.; PORTO, A.L.F. Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere, v.204, p.344-350, 2018.
METZ, B.; DAVIDSON, O.R.; BOSCH, P.R.; DAVE, R.; MEYER, L.A. Climate Change 2007 – Impacts, Adaptation and Vulnerability. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: United Kingdom and New York, USA; 2007.
MME – Ministry of Mines and Energy (Ministério de Minas e Energia). Análise de conjuntura dos biocombustíveis. 79p. Edition: 2019. Disponível em <https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/analise-de-conjuntura-dos-biocombustiveis-2019> Acesso em 10/10/2020.
MOBIN, S. & ALAM, F. Some promising microalgal species for commercial applications: A review. Energy Procedia, v.110, p.510-517, 2017.
MOBIN, S.M.A.; CHOWDHURY, H.; ALAM, F. Comercially important bioproducts from microalgae and their current applications – A review. Energy Procedia, v.160, p. 752- 760, 2019.
MOHAMMAD, M.M.A., KALBASI, M., MOUSAVI, S.M., GHOBADIAN, B. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep. Biochem. Biotech., v.46, p.150–156, 2016.
MONTALVO, G.E.B.; THOMAZ, SOCCOL, V.; VANDENBERGHE, L.P.S.; CARVALHO, J.C.; FAULDS, C.B.; BERTRAND, E.; PRADO, M.R.M.; BONATTO, S.J.R.; SOCCOL, C.R. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresource Technology, v.273, p. 103–113, 2019.
MORAIS, M. G.; VAZ, B.S.; MORAIS, E.G.; COSTA, A.V. Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International, v. 2015, 15pgs, 2015.
MORÉE, A., BEUSEN, A., BOUWMAN, A., WILLEMS, W. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochem. Cycles, v. 27, p. 836–846, 2013.
PARANJAPE, K.; LEITE, G.B.; HALLENBECK, P.C. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol. Bioresource Technology, v.214, p.778–786, 2016.
PATEL, A.K.; JOUN, J.M.; HONG, M.E.; SIM, S.J. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology, v.282, p.245–253, 2019.
PIENKOS, P.; DARZINS, A. The promise and challenges of microalgal-derived biofuels. Biofuels. Bioproducts and Biorefining, v. 3, p. 431–440, 2009.
PODDAR, N.; SEN, R.; MARTIN, G.J.O. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Research, v.33, p.298–309, 2018.
RAMLOW, H., MACHADO, R.A.F., MARANGONI, C. Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Sc. Technol., v.76, p.2565-2579, 2017.
REN, H.; TUO, J.; ADDY, M.M.; ZHANG, R.; LU, Q.; ANDERSON, E.; CHEN, P. RUAN, R. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, v.245, p. 1130–1138, 2017.
ROOSTAEI, J., ZHANG, Y., GOPALAKRISHNAN, K., OCHOCKI, A.J. Mixotrophic Microalgae Biofilm: A novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Scientific Reports, v.8, 12528, 2018.
ROSER, M.; RITCHIE, H.; ORTIZ-OSPINA, E. World Population Growth. Published online at OurWorldInData.org. 2019. Disponível em <'https://ourworldindata.org/world-population-growth'> Acesso em 08/10/2020.
SAJADIAN, S.F., MOROWVAT, M.H., GHASEMI, Y. Investigation of autotrophic, heterotrophic, and mixotrophic modes of cultivation on lipid and biomass production in Chlorella vulgaris. Nat. J. Physiol., Pharm. Pharmacol, v.8, 2018.
SANTANA, H.; CEREIJO, C.R.; TELES, V.C.; NASCIMENTO, R.C.; FERNANDES, M.S.; BRUNALE, P.; CAMPANHA, R.C.; SOARES, I.P.; SILVA, F.C.P.; SEIXAS SABAINI, P.; SIQUEIRA, F.G.; BRASIL, B.S.A. Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization, Bioresource Technology. v. 228, p. 2133-140, 2017.
SATHASIVAM, R., RADHAKRISHNAN, R., HASHEM, A., ABDULLAH, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci., v.26, p.709-722, 2019.
SAYEDIN, F.; KERMANSHAHI-POUR, A.; HE, Q.S; TIBBETTS, S.M.; LALONDE, C.G.E.; BRAR, S.K. Microalgae cultivation in thin stillage anaerobic digestate for nutrient recovery and bioproduct production. Algal Research, v.47, 101867, 2020.
SHOW, P. L.; TANG, M.S.Y.; LING, T.C.; OOI, C-W.; CHANG, J-S. A Holistic Approach to Managing Microalgae for Biofuel Applications. Int. J. Mol. Sci., v.18, 34p., 2017.
SIVARAMAKRISHNAN, R. & INCHAROENSAKDI, A. Enhancement of lipid production in Synechocystis sp. PCC 6803 overexpressing glycerol kinase under oxidative stress with glycerol supplementation. Bioresource Technology, v.267, p. 532–540, 2018.
SU, M.; D’IMPORZANO, G.; VERONESI, D.; AFRIC, S.; ADANI, F. Phaeodactylum tricornutum cultivation under mixotrophic conditions with glycerol supplied with ultrafiltered digestate: A simple biorefinery approach recovering C and N. Journal of Biotechnology, v.323, p.73–81, 2020.
SUTHAR, S. & VERMA, R. Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Saf.Environ. v.113, p.141–148, 2018.
SYDNEY, E.B.; NETO, C.J.D.; CARVALHO, J.C.; VANDENBERGHE, L.P.S.; SYDNEY, A.C.N.; LETTI, L.A.J.; KARP, S.G.; SOCCOL, T.; WOICIECHOWSKI, A.L.; MEDEIROS, A.B.P.; SOCCOL, C.R. Microalgal biorefineries: Integrated use of liquid and gaseous effluents from bioethanol industry for efficient biomass production. Bioresource Technology, v.292, 121955, 2019.
UBANDO, A.T., FELIX, C.B., CHEN, W.H., 2020. Biorefineries in circular bioeconomy: comprehensive review. Bioresource Technology, v. 299, 122585, 2020.
VANEECKHAUTE, C., LEBUF, V., MICHELS, E., BELIA, E., VANROLLEGHEM, P.A., TACK, F.M.G., MEERS, E. Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization, v.8, p.21–40,2017.
ZUCCARO, G.; YOUSUF, A.; POLLIO, A.; STEYER, J.-P. Microalgae Cultivation Systems. In Microalgae Cultivation for Biofuels Production. pg.11-19, 2020.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2021 GABRIELE RODRIGUES CONCEIÇÃO, Dr. Chinalia

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The entire content of this magazine is protected by the Copyright Law (9,610 / 98). The partial or complete reproduction of articles, photographs or art in general contained in the publications must be credited to the author in question. The magazine Ambiente: Gestão e Desenvolvimento (ISSN 1981-4127) is distributed under the Creative Commons license - Attribution - commercial use - sharing under the same license (BY). There is permission to use and create works derived from the material, as long as there is attribution of credits (BY). Publications are distributed free of charge on the official website.








