Determinação experimental e simulada da produção de biogás usando o ADM1
Calibração do modelo
DOI:
https://doi.org/10.24979/ambiente.v1i1.951Palavras-chave:
Produção de biogás, ADM1, MATLAB®Resumo
Dentre os modelos matemáticos que objetivam entender e otimizar o processo de produção de biogás (PB), destaca-se o modelo de digestão anaeróbica nº 1 (ADM1). Os principais fatores limitantes da implementação do ADM1 referem-se a sua calibração. Diante disto, o presente trabalho teve como objetivo ajustar o ADM1 para a PB usando glicose e dejetos suínos diluídos em água. A PB experimental ocorreu dentro de um tempo de retenção hidráulica (TRH) de 13 dias em regime de batelada, e a análise do biogás produzido foi realizada via cromatografia gasosa. A produção simulada foi obtida a partir do MATLAB® mediante o ajuste de parâmetros bioquímicos, físico-químicos e operacionais. O volume médio acumulado diário de biogás experimental obtido foi de 160 mL·dia-1, estando 9,03 mL·dia-1 abaixo do valor simulado (R2 = 0,98). As concentrações percentuais de CO2 (60% e 52%) e CH4 (40% e 48%) previstos em simulação para um TRH de 6 dias estavam de acordo com os mensurados experimentalmente, respectivamente. Nesse contexto, conclui-se que o modelo calibrado pode ser usado como base de previsão para a PB em condições similares à observada por esse estudo.
Downloads
Referências
AQUINO, S. F.; SILVA, S. Q.; CHERNICHARO, C. A. L. Considerações práticas sobre o teste de demanda química de oxigênio (DQO) aplicado a análise de efluentes anaeróbios. Revista de Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 11, n. 4, p. 295–304, abr. 2006. Disponível em: <https://www.scielo.br/pdf/esa/v10n2/a09v10n2>. Acesso em: 08 jul. 2019.
BATSTONE, et al. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science & Technology, Australia, p.1–11, 2002. Disponível em: <https://edisciplinas.usp.br/pluginfile.php/4296694/mod_resource/content/1/ADM1-WST.pdf >. Acesso em: 08 jun. 2019.
BUSWELL, A. M., MUELLER, H. F. Mechanism of methane formation. Industrial and Engineering Chemistry, v. 40, n. 3, p 550–552, 1952. Disponível em: https://doi.org/10.1021/ie50507a033. Acesso em: 09 jul. 2019.
DAZA, Silva Marina Araujo. Nusselt number correlation for a jacketed stirred tank using computational fluid dynamics. 2017. 107 f. Dissertação (Mestrado em Engenharia Química) — Universidade Estadual de Campinas, Campinas, 2017. Disponível em: <http://repositorio.unicamp.br/jspui/handle/REPOSIP/330527>. Acesso em: 12 set. 2019.
DEMITRY, Morris Elya. Estabilidade do processo de digestão anaeróbica e a extensão do ADM1 para a codigestão de lodo municipal com resíduos de padaria. Tese (Doutorado em Engenharia Ambiental) — Utah State University, Logan, 144 f, 2016. Disponível em: <https://digitalcommons.usu.edu/etd/4945>. Acesso em: 13 ago. 2019.
GALÍ, A. et al. Modified version of ADM1 model for agro-waste application. Bioresource Technology, v. 100, n. 11, p.2783–2790, 2009. Disponível em: <https://doi.org/10.1016/j.biortech.2008.12.052>. Acesso em: 05 mar. 2019.
GIRAULT, R. et al. Combination of batch experiments with continuous reactor data for ADM1 calibration: application to anaerobic digestion of pig slurry. Water Science & Technology, p.2575–2582, 2011. Disponível em: <https://doi.org/10.2166/wst.2011.594>. Acesso em: 04 jan. 2019.
IVANOVA, Lyudmila. K.; RICHARDS, David. J.; SMALLMAN, David. J. The long-term settlement of landfill waste. Waste and Resource Management, v. 161, p. 121-133, 2008. Disponível em: <https://doi.org/10.1680/warm.2008.161.3.121> Acesso em: 13 out. 2019.
NGUYEN, Hoa Huu. Modelling of food waste digestion using ADM1 integrated with Aspen Plus. These (Doctorate of Philosophy) — University of Southampton, 305 f., 2014. Disponível em: <https://eprints.soton.ac.uk/375082/2/HHN_Thesis_FINAL_Feb_2017_rechecked.pdf >. Acesso em: 27 out. 2019.
PABÓN-PEREIRA, C. P.; SLINGERLAND, M.; VAN LIER, J. B.; RABBINGE, R. Anaerobic digestion as a key technology for biomass valorization: contribution to the energy balance of biofuel chains. In: WELLINGER, A.; MURPHY, J.; BAXTER, D. The biogas handbook science, production and applications. Philadelphia: Woodhead Publishing, 2013. cap. 7, p.166–186.
PONTES, Anderson Honório de Brito. Automatização de um biorreator para avaliação da codigestão de biomassas. 2018. 128 f. Dissertação (Mestrado em Ciências Físicas Aplicadas) — Centro de Ciências e Tecnologia, Universidade Estatual do Ceará, Fortaleza, 2018.
QUEEN, André Sampaio. Simulador de Reatores Anaeróbios com base no ADM1. Dissertação (Mestrado em Engenharia de Sistemas) — Departamento de Engenharia de Telecomunicações e Controle. Escola Politécnica da Universidade de São Paulo, São Paulo, 100 f, 2006. Disponível em: <https://www.teses.usp.br/teses/disponiveis/3/3139/tde-04092006-170243/publico/AndreQueen.pdf>. Acesso em: 12 set. 2019.
RICHARDS, B. K., CUMMINGS, R. J., WHITE, T. E., JEWEL, W. J. Methods for kinetic analysis of methane fermentation in high solids biomass digesters. Biomass and Bioenergy, v. 1, n. 2, p. 65–73, 1991. Disponível em: <https://doi.org/10.1016/0961-9534(91)90028-B>. Acesso em: 12 ago. 2019.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Copyright (c) 2021 Pedro Henrique de Lima Gomes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.
Todo o conteúdo desta revista está protegido pela Lei de Direitos Autorais (9.610/98). A reprodução parcial ou completa de artigos, fotografias ou artes no geral contidas nas publicões deve ser creditada ao autor em questão. A revista Ambiente: Gestão e Desenvolvimento (ISSN 1981-4127) é distribuída sob a licença Creative Commons – Atribuição – uso comercial – compartilhamento pela mesma licença (BY). Há permissão de uso e criação de obras derivadas do material, contanto que haja atribuição de créditos (BY). As publicaçãos são distribuídas gratuitamente no site oficial.